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Abstract— Even the simplest of organisms may exhibit low-
level intelligent behaviors in their directed movements, such
as in foraging. We used the Avida digital evolution research
platform to explore the evolution of movement strategies in a
model environment with a single local resource that diffuses to
produce a gradient, which organisms have the ability to follow.
Three common strategies that evolved, Cockroach, Drunkard,
and Climber, exhibit how both environmental constraints and
historical contingency play a role in the emergence of intelligent
behaviors. The evolved programs are also suitable for use in
controllers on robots.

I. INTRODUCTION

There are a variety of choices for the scale of problem to
examine when it comes to issues of movement of agents. At
the smallest scale, there are problems of kinematics, where
matching patterns of activation of limbs or wheels to useful
agent motion is the focus. At the largest scale, there are
problems of characterizing particular patterns of movement
by agents, and exactly how an individual agent coordinates
its internal states to obtain motility is not relevant. Our
research takes an approach at an intermediate level, seeking
to elucidate how evolutionary processes can result in indi-
vidual control of existing movement capabilities in order to
intelligently exploit environmental resources.

There have been many approaches in computational sys-
tems that touch upon the movement of agents. The question
of interest in each case makes a difference as to what
capabilities are given to such agents, and what properties
or capabilities are altered through the time course of the
computation. The question of interest for us lies in how
intelligent behavior arises through evolutionary processes,
so our approach does not specify any particular way of
generating such behaviors, but leaves that open to exploration
via those processes.

Our interest requires a more open-ended approach than
is often used in studies of computational intelligence. In
most cases, there is a specific function of interest to be
accomplished, and the means or process by which that
function is acquired is of less interest than the fact of either
solving, or approximately solving, it. Instead, in looking at
the evolution of intelligent behavior, our primary interest is
in finding out by what means less capable agents give rise
to those able to appropriately exploit prevailing conditions.

Given that a rich repertoire of behaviors in biological
organisms concerns movement, where examples abound rang-
ing from chemotaxis in bacteria through route planning for
human delivery drivers, exploring the use of movement by

evolving agents can open up many research questions that
are directly comparable to work within biological systems.

Computational research touching on movement of agents
spans many different fields. Movement may not be modeled
at all, but simply assigned a cost value, as in work in artificial
neural systems applied to the traveling salesman problem [1].
For many purposes, specifying one or more fixed movement
strategies, possibly modified stochastically by parameters,
suffices. Such approaches have been seen in individual-based
models (IBM) in ecology (e.g., Roese et al. [2]) and artificial
life (e.g., Echo [3] and Gecko [4]).

In evolutionary robotics, interest in the movement of
agents also covers a variety of levels. These range across
studies looking at environment recognition given an initial
set of behaviors [5], evolving kinematics for particular
controller anatomies ([6], [7]), evolving neural controllers
for movement [8], and direct evolution of a Turing-complete
binary code to accomplish an obstacle-avoidance task with a
robot [9].

Our hypothesis is that given a means of extracting in-
formation from the environment, processing it, and having
the capability for movement in the environment, evolution-
ary processes can discover effective methods for exploiting
spatially-distributed resources. For the purpose of testing this
hypothesis, we use the Avida artificial life software platform.
Our approach provides organisms with the capacity to make
single-step movements, to alter their heading randomly to
another of a limited set of discrete headings, and to retrieve
information from the environment about local differences
in resource availability, but with no information about how
to use these capabilities in order to best make use of
environmental conditions.

An important consideration for our approach to this
problem is that we be able to elucidate the patterns of
emergence by which evolutionary computation finds intelli-
gent behaviors. We can usefully classify movement strategies
based upon the acquisition and use of information from
the environment, where effective and efficient collection
and application of information in decision-making is a key
property of intelligence. Our goal is to investigate the
patterns of emergence in the evolution of such behavior,
taking note of both theoretical and applied concerns. In the
simple environment we have modeled, an optimal strategy
exists, other things being equal, namely, direct gradient
ascent. At the opposite extreme, a random walk is the worst
strategy. Not moving provides neither benefit nor cost, but
a random walk can actually cost more than the benefit
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provided. Other movement strategies may not be optimal but
nevertheless may be good enough. What behaviors evolve
and what effects do historical contingency and environmental
constraints have? Can evolution produce effective methods at
a level of abstraction suitable for real-world application with
different sensory modalities?

Toward that last concern, we also worked with robots to
instantiate various of the evolved programs found in our
experiments.

II. METHODS

In a preliminary step for exploring the evolution of
intelligent behavior with choice expressed by movement,
we extended the proven artificial life platform Avida ([10],
[11], [12], [13], [14]). Avida provides some features that
are useful for implementing movement and the specification
of spatially distributed resources, but other features must be
either modified, or added as new to the system. The primary
property of each digital organism in Avida, or Avidian, is its
genome, a circular list of instructions from a Turing-complete
instruction set. Avidian instructions are executed on a virtual
CPU. The CPU is outfitted with three registers and two
stacks. The instruction set permits labels, conditional eval-
uation, looping, arithmetic, logic operations, and everything
needed to permit self-replication of the Avidian genome and
generating an offspring Avidian thereby. Avida does not use
explicit fitness functions, instead permitting the experimenter
to associate merit with the completion of certain tasks
or emission of particular behaviors. Avidians with higher
accrued merit are awarded a proportionally greater share of
available time-slices, meaning that they are able to process
instructions faster and may replicate more quickly than
Avidians with lower merit. Time in Avida is measured in
updates, where each update corresponds to a number of
instructions performed, on average, by each Avidian in the
population. The methods used in this research overlap with
the research of Grabowski et al. (2008) [15], where further
details on methods can be seen.

We added three instructions to Avida: tumble, move,
and sense-diff-facing. Avida uses a discrete two-
dimensional grid for placement of Avidians. Each Avid-
ian has a facing that orients it toward an adjoining grid
cell. The tumble instruction changes the current facing
to a random facing toward a different adjoining grid cell.
The move instruction causes the Avidian to move to the
grid cell it faces. If another Avidian is in that grid cell,
the two swap places. Facings are preserved across moves,
or altered if the facing is not legal in the new grid cell. The
sense-diff-facing instruction compares the amount of
a resource in the current grid cell and the grid cell faced,
placing that difference in register B.

To model a simple environment with a local resource with
diffusion, a resource peak was specified with concentrated
resource availability in a local region, and a gradient of
lesser resource availability established across the remainder
of a bounded grid (see Figure 1). No merit was accrued
by any organism without movement, but each step taken

on move incurred a 2% movement cost in merit. None
of the logic tasks used in previous work with Avida were
rewarded. Instead, a new task, dont-care, was associated
with the spatially-distributed resource, and evaluation only
occurred when an Avidian executed a move instruction.
Avidians accrued more merit when they moved to grid cells
with higher levels of the resource. A population cap, or
carrying capacity, was implemented, such that on the birth of
an Avidian, another randomly selected Avidian other than the
parent was killed to keep the population within the specified
carrying capacity.

Fig. 1. Resource distribution, shown in both 3D and 2D projection. The
scale shows the mapping between color and amount of resource per grid
cell.

In our first experiment, 100 runs were conducted, each
seeded with a basic replicating Avidian with no other
capabilities. The grid size was 111x101 grid cells. We used
a bounded grid model, and chose the size of the sides to
be relatively prime so that there was less chance that our
Avidians could exploit some periodicity implicit in the grid
size. Runs lasted for 500,000 updates, with each update
representing three instructions executed per organism on
average. The population size was capped at 200 Avidians,
leaving slightly over 98% of grid cells unoccupied at any
given update in the run. There was no depletion of the
spatially-distributed resource during the run. Information
about the Avidian population, the resource distribution, and
a tally of visits by Avidians to each grid cell was kept from
each run, with summaries logged every 5,000 updates.

From among the movement strategies that were observed
in these runs, a selection of evolved programs that approxi-
mated a gradient ascent method (the class of Climber move-
ment strategies) that performed well were used to test
the generality of the programs. One aspect of intelligent
behavior is that such behaviors provide adaptive responses
to novel stimuli. For this test, evolved Climber programs
were injected into Avida runs with random placement of the
resource peak.

The transition probabilities derived from the 100 runs of
the first experiment were used to simulate sets of runs of
various lengths via Monte Carlo methods. A Perl script
was used to read in the transition probability data, then
iterate such that beginning from the start state the simulation
would select the following state based upon a pseudo-random
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number and the relevant transition probabilities. Each iterated
step corresponded to 5,000 updates in an Avida run.

We translated evolved programs from Avida to control
an iRobot Create robot, using software derived from a
previous effort [16]. Changes from that work included a re-
organization of code generation to fit larger evolved pro-
grams into the limited memory space of a robotic controller
and completion of the virtual CPU instruction set for the
robot context. The Create Command Module, an Atmel
ATMEGA16-based microcontroller system, was used for
hosting our program. The program consists of a small robot
driver program, the genome data, and a minimal version of
the Avida virtual CPU, including its stacks and registers.
The Create was outfitted with two CdS cell light sensors,
one at the front and the other at the rear of the robot. For
most Avida instructions, the only things that change are
states of the virtual CPU. For the three added instructions,
move, tumble, and sense-diff-facing, there are
routines that effect robot movement, change of heading, and
acquisition of sensor information.

In a second experiment, we tested whether the
Climber class of movement strategies were more commonly
prevalent with increasing lengths of runs. 25 runs were
conducted with the same conditions as in the initial set of
runs, except that the runs lasted for 5,000,000 updates instead
of 500,000.

III. RESULTS

A. Experiment 1

To provide a basis for comparison, a hand-coded Avid-
ian that used a random walk was injected in a run with
mutation turned off. There was no apparent correlation of
movement of the random walker with increasing resources
(see Figure 2).

Fig. 2. Visits to grid cells by random walker, with 2D projection of resource
distribution. The scale indicates the number of visits made to each grid cell.
The resource distribution is shown in 2D and is not to scale.

Eight generally distinctive movement strategies emerged
in our 100 runs (see Table I). The three movement strategies
that were most often prevalent at the ends of runs were
Cockroach, Drunkard, and Climber (see Figure 3). The
five other movement strategies are represented in Figure 4.
The classes of movement strategies were distinguished by

patterns of visits to grid cells by populations of Avidians.
The Cockroach movement strategy is so named because
the Avidians using this strategy move primarily along the
grid boundaries and via diagonals across the grid interior.
Populations in which Drunkard is prevalent show visits
to grid cells that, in aggregate, are more common in the
vicinity of the resource peak than elsewhere in the grid. The
Climber movement strategy shows a sharp peak in grid cell
visits at the resource peak. The Column movement strategy
is recognizable from the aggregate visits to grid cells because
most visits occur in grid cells of a single column. The Row
movement strategy similarly is recognizable because most
visits occur in grid cells of a single row. The Cake movement
strategy shows a plateau of visits centered on the resource
peak. The Square movement strategy shows a similar plateau
of visits, but instead of a circular boundary to the plateau, it
shows distinct corners. The Shark movement strategy shows
a characteristic triangle-shaped peak of visits along one side
of the grid.

Every evolutionary run produced at least one recognizable
movement strategy. Because each run began with an Avid-
ian whose only capability was self-replication, initially what
movement occurred showed no such recognizable movement
strategy. Almost all runs resulted in the successive evolution
of two or more movement strategies (e.g., Figure 7). The first
plot in the figure shows the start state, where the move in-
struction is sometimes incorporated into Avidian genomes,
but no recognizable pattern of movement has yet resulted.
The higher numbers of visits to grid cells on the left-most
boundary is explained by a regularity in Avida, that the facing
associated with grid cells is initialized in these runs to point
to the left. Avidians encountering a grid boundary will have
their facing turned along the edge of the boundary half of
the time when assigned a random legal facing. The second
plot shows the emergence of the first recognizable movement
strategy in this run, Cockroach. This occurs prior to update
15,000 in this particular run. The second evolved movement
strategy, Drunkard, appears in the fourth plot, and became
prevalent in the population prior to update 25,000. The third
evolved movement strategy, Column, appears in the tenth plot
(or second plot in the third row), and became prevalent prior
to update 265,000 in the run. The fourth and final evolved
movement strategy, Climber, appears in the fourteenth plot
(or second plot in the fourth row), having become prevalent
prior to update 375,000 in the run. The preceding plot clearly
shows a mix of Drunkard and Climber Avidians contributing
to the grid cell visits.

Different runs produced different implementations of the
strategies. For example, Climbers evolved in 12 runs out
of 100, but some used tumble very frequently and others
used it sparingly, thus showing twisty paths or long straight-
line paths, respectively, in regions without large differences
in resource availability (see Figure 5). Thus the collective
evolved behaviors display the effects of both convergence
due to the shared environment and the contingency of the
mutations that produced the variations upon which selection
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TABLE I
MOVEMENT STRATEGIES SEEN IN EXPERIMENT 1, 500,000 UPDATES

Name Description Appearance Prevalent at Percent
in Runs End of Runs

Cockroach Moves around boundaries and diagonals 93 24 24%
Drunkard Biased random walker 80 57 57%
Climber Approximates gradient ascent 12 12 12%
Row Favors a particular row 23 0 0%
Column Favors a particular column 19 3 3%
Cake Circular plateau of visits centered on resource peak 3 3 3%
Square Rectangular plateau centered on resource peak 1 1 1%
Shark Peak visits shows as triangle at side 1 0 0%

Fig. 3. Most common types of evolved movement strategies. Visits
to grid cells over 5,000 updates plotted for Cockroach, Drunkard, and
Climber movement strategies, yielding a snapshot of space-time dynamics
in the populations.

Fig. 4. Visits to grid cells over 5,000 updates plotted for five other
movement strategies: Cake, Square, Row, Column, and Shark.

acted.
Another characteristic of intelligence is the ability to

generalize a strategy and use it in a new situation. An evolved
Climber could successfully move to resource peaks set in
new locations (see Figure 6).

Transitions between states representing the eight observed
classes of movement strategies plus a start state were tallied
for every 5,000 updates in each run up to update 495,000
(see Table II). Each zero entry in the table indicates that
there were no observed instances of a population transition
from the movement strategy or start state to the movement
strategy indicated at the top of the column. Examining
the column headed by a particular movement strategy for
non-zero entries reveals which movement strategies were
precursors for it. The probability of self-to-self transition is a
good indicator of stabiliity. The Climber movement strategy
is only a precursor for itself, as is the Square movement
strategy. All other movement strategies have been observed
to be precursors for a different movement strategy. Five
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Fig. 5. Diversity of Climber Avidians shown with three representative
examples run for 2,000 updates. The top Avidian takes almost 2000 updates
to reach the resource peak and is thus relatively inefficient, the bottom one is
most efficient of these, and the middle Avidian demonstrates an intermediate
efficiency.

other movement strategies have been observed as precursors
to Drunkard. Four other movement strategies have been
observed as precursors to Cockroach.

B. Robotic embodiment

Preliminary results when translating high performance
Avidians to the iRobot Create platform showed the same
recognizable differences in behavior between classes of
movement strategies. The classes of movement strategies
broadly differ in the proportion of move instructions to
tumble instructions, and that difference is appreciable in
robot behavior.

C. Experiment 2

Results from our set of 25 runs lasting 5,000,000 updates
are summarized in Table III. The Climber class of movement
strategies evolved to be prevalent in 20 of these runs, or 80%
of the final outcomes.

Fig. 6. The same Climber Avidian is used in Avida runs with randomly-
placed resource peaks. Three representative examples of such runs are
shown. The generality of the Climber movement strategy is seen in the
way the same Avidian finds the randomly-placed resource peaks.

D. Monte Carlo simulations

Using the Monte Carlo methods described earlier, sim-
ulated sets of runs produced the following results. At the
5,000,000 update mark, the tally of Climber movement
strategy as the end state in 1000 simulated runs was 742,
or 74.2%. This compares fairly well to our result of 80%
of our actual runs in our second experiment showing the
Climber movement strategy as the final prevalent movement
strategy. Dividing the 1,000 simulated runs into sets of 25
reveals that 14 out of 40 sets had 20 or more runs ending
with the Climber movement strategy.

IV. DISCUSSION

In our first experiment, the three principal evolved
movement strategies were Cockroach, Drunkard, and
Climber (Figure 3). These span a range of uses of
environmental information. Cockroach appears to be an
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TABLE II
TRANSITION PROBABILITY BETWEEN STATES SEEN IN EXPERIMENT 1, 500,000 UPDATES

Initial state Start Cake Climber Cockroach Column Drunkard Row Shark Square Total
Start 0.68 0.00 0.00 0.29 0.00 0.036 0.00 0.00 0.00 308
Cake 0.00 0.99 0.00 0.00 0.00 0.0075 0.00 0.00 0.00 133
Climber 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 425
Cockroach 0.00 0.0003 0.0003 0.96 0.012 0.020 0.0096 0.00 0.00 3835
Column 0.00 0.00 0.0057 0.26 0.34 0.36 0.029 0.00 0.00 174
Drunkard 0.00 0.0006 0.0021 0.0035 0.013 0.98 0.0017 0.0002 0.00 4823
Row 0.00 0.00 0.00 0.27 0.079 0.047 0.61 0.00 0.00 127
Shark 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.014 71
Square 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 4
Count 208 136 437 3857 178 4881 127 71 5 9900

TABLE III
OUTCOMES OF LONG RUNS

Name Prevalent at end Percent
Climber 20 80%
Drunkard 3 12%
Cake 2 8%

application of blind search that exploits the fact that the
environment here is a bounded grid. Movement around the
perimeter plus occasional crossings of the interior space on
the long diagonals mean that an Avidian employing this
strategy will approach within about 20% of the length of the
longest side to even the most inaccessibly-placed resource
peak. Given the monotonically-decreasing distribution of our
resource and coupled with the random initial placement of
Avidians on birth, Cockroach provides a better movement
strategy than a localized random walk. If intelligence is
taken to be the increased frequency of emission of adaptive
behavior under novel stimuli, as is seen in studies of animal
behavior, Cockroach either does not qualify as such, since all
stimuli yield the same behavior, or may be seen as a small
relative improvement on a random walk, since it does exploit
the conditions implicit in a bounded grid for movement.
Drunkard is not simply a random walk; it is instead a biased
random walk that in aggregate movement of the population
visits the region around the peak resource somewhat more
often than other parts of the grid. Information use is present,
but not efficient for Drunkard, representing an improvement
over the Cockroach movement strategy. Climber moves
effectively toward the resource peak using the information
in the resource gradient and then remains in the vicinity
of the resource peak. The test of generality shows that the
Climber programs are not dependent upon the configuration
used in the evolution runs, but rather are capable of locating
a randomly-placed resource peak. (Generality is simplest
to uncover for the Climber movement strategy, and will
require substantial additional computer time to test for
other movement strategies.) Goal-seeking behavior, such as
self-direction towards a target, is one common diagnostic
character of intelligence and simple forms of such behavior

have evolved in these populations.
Transition probabilities tell us useful information about

convergence and stability of movement strategies. Notably,
our class of gradient ascent programs, Climber, is highly sta-
ble: in all instances where the population once has Climber as
the prevalent movement strategy, it remains that way there-
after. The transition table (Table II) reinforces the insight
that evolutionary processes contingently build upon existing
capabilities to derive new ones. Various movement strategies
only evolve given the prior evolution of other, precursor,
movement strategies. The likelihood of evolving a dependent
movement strategy has to do with both the frequency with
which the precursor occurs, and with the inherent stability of
the precursor movement strategy. The more stable a precursor
strategy is, the less frequent is the evolution of the dependent
movement strategy. Precursor states may provide modules or
features necessary for co-option to evolve new functionality
[14]. The Climber movement strategy was observed to be
reachable, directly or indirectly, from all other movement
strategies save Shark and Square, and those were rare within
our dataset. The Climber movement strategy, though, was
only reached directly from populations where the Cockroach,
Drunkard, or Column movement strategies were prevalent.
In our simple system, the common pattern of progression
in movement strategies is the early evolution of Cockroach,
followed by evolution of Drunkard, and in some cases the
evolution of Climber follows. Our second experiment using
much longer runs shows that the Climber movement strategy
becomes the most commonly prevalent movement strategy at
the end of runs, given a longer time for evolution to occur.

There are some interesting implications of the results
of our Monte Carlo simulations based upon the transition
probabilities derived from our Experiment 1 results. These
were sufficient to generate an expectation compatible with
the results of our Experiment 2 with respect to the probability
that the Climber movement strategy would be prevalent at the
end of runs. This indicates a certain degree of predictability
of outcomes when the analysis is conducted at the level
of classes of behavior. It also implies that the underlying
contingent dynamics seen in shorter runs are adequate to
explain the results of our longer runs, and that longer runs
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Fig. 7. Each graph above represents total Avidian visits to grid cells
for 5,000 updates in a run for points near transitions between movement
strategies. The progression shows the initial start state, then Cockroach, then
Drunkard, one period of Column, and ends with Climber as the prevalent
movement strategy.

have not introduced a qualitative difference in outcomes
compared to the shorter runs.

It is characteristic of evolutionary processes to accrue and
expend variation in a population. Within our experiments,
we saw variation at two levels. Examination of individual
Avidian programs from within the most common classes
of movement strategies revealed one level of variation,
as Avidians within particular movement classes differed
from one another. Within the Climber class of movement
strategies, there were notable differences in the efficiency of
individual Avidian programs (Figure 5). The higher level of
variation was seen in the diversity of the classes of movement
strategies. We observed a total of eight movement strategies
with recognizably different patterns of movement based on
aggregate population behavior.

The evolved programs of Avidians are examples of ef-
fective methods, a finite series of steps that when carried
out deliver a particular outcome. What is rewarded within
Avida is always simply the accrual of higher merit. We
can recognize classes of behaviors evolved by Avidians and
cast those in other terms, as in the case of the class
of Climber movement strategies that approximate gradient
ascent approaches.

Our results exemplify the evolution of emergent behavior,
with a multiplicity of solutions produced in response to a
simple environmental condition, elaborated by the context of
a population of competitors. The phenomenon of satisficing
is seen in our results, with a non-optimal movement strategy,
Drunkard, being the most common strategy seen at the
end of runs in our first experiment, and still seen even in
the far longer runs of our second experiment. Satisificing
describes cases where non-optimal adaptations persist in
evolving populations, even when we have an expectation
that better adaptations may have originated as rare traits
in those populations. We propose a scenario that explains
the appearance of satisficing between movement strategies

in our experiments. An important consideration here is that
success in evolutionary terms depends not only upon some
figure of merit for a specific task of interest, but upon the
relationship of an individual to the general performance of
other individuals in the population. With the pattern of the
successive emergence of different movement strategies seen
in our experiments, it is apparent that for a novel movement
strategy to displace a previously prevalent strategy, it must
provide an appreciable advantage over that strategy, and it
must not be lost due to drift. This need not necessarily be
an advantage based on the task of interest, but could also
be premised upon such factors as reducing gestation time.
Those “non-task” factors will also be acted upon within the
sub-population that performs the current prevalent movement
strategy. From the perspective of an Avidian, there is no
distinction between task and non-task. In our evolution runs,
the population size was limited to 200 organisms or less.
While not tiny, this is nonetheless a fairly small population
size where appreciable effects of drift might be seen. As
in biological evolution, those solutions that lead to greater
representation of similar organisms in future generations
displace others. This puts a novel competitive movement
strategy at a disadvantage in that the number of individuals
initially performing it is small, and thus may be lost due to
drift, and that improvements in non-task factors are more
likely to occur in the larger sub-population that is using
the current prevalent movement strategy. The conditions for
switching a population between movement strategies may at
times require a combination of improvements in task perfor-
mance and non-task factors, plus an additional portion of luck
to evade winnowing by drift when individuals performing
the new movement strategy are rare. These considerations,
we believe, provide an explanation for the phenomenon of
satisficing we observed that is based in known population
genetics and dynamics.

A. Future Work

Even within the context of a simple environment composed
of one resource peak, there was considerable complexity seen
in the evolved outcomes. There are a number of analyses
requiring extensive additional runs that could be conducted,
but are beyond the scope of this paper.

There are several further questions that we are contem-
plating. Would expansion of the resource space to three
dimensions alter the basic movement strategies seen or their
common sequence of occurrence? The different outcomes
of likelihood of visiting nodes on a lattice at two and
three dimensions [17] suggests that movement strategies
or relationships between transitions may differ in the two
cases. This involves stepping away from the current two-
dimensional cell layout used in Avida, and replacing it with a
flexible topology-management system that will provide both
a continuous and three-dimensional space for Avidians to
move in. Another question is whether evolution can find ef-
fective methods in the case where a spatially-defined resource
also shifts position over time during a run, which should
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also permit investigations into evolved behavior concerning
periodicity in resources and foraging under uncertainty.

Another question is how a more complex environment
would change the evolution of movement strategies, specifi-
cally in the case where both an appetitive resource distribu-
tion and an aversive resource distribution exist, as in having
both “food” to be located and “poison” to be avoided within
the environment.

We also want to explore competitions between our evolved
Avidian programs. This should help clarify what features of
evolved programs help make them successful, whether those
have to do explicitly with resource exploitation or not.

V. CONCLUSIONS

In testing the capability of evolutionary computation to
produce effective methods utilizing movement strategies
to intelligently exploit spatially-distributed resources, our
results show that such strategies do emerge and that in about
12% of shorter runs and in 80% of longer runs the final
movement strategy used by the majority of the population at
the end of the run is in the class of optimal response for our
environment, that of gradient ascent.

The pattern of emergence of movement strategies was
not strictly fixed, but in most runs there were multiple
movement strategies employed by most of the population
over the time course of the run. Contingency played a role,
as evidenced by the multiplicity of movement strategies,
diversity of individual implementations, and the variety of
movement strategies employed by most of the population at
the end of our runs.

Given that our environment utilized an extremely simple
spatial resource distribution, that of a resource that monoton-
ically decreases with increasing distance from the resource
peak, the observed set of eight movement strategy classes
and apparent diversity of evolved programs within those
classes indicates that the degree of complexity of evolved
responses is not tightly constrained by the complexity – or
simplicity – of the environment. The degree of interaction
between Avidians during the evolution runs was small, so
any contribution of inter-Avidian interactions to the evolved
complexity should likewise be small.

Satisficing broadly describes phenomena where non-opti-
mal solutions that are “good enough” are retained. Our
results are consistent with an interpretation of satisficing
in that the optimal class of response, a Climber movement
strategy approximation to gradient ascent, was only seen
in a relatively small fraction of our shorter runs, rising
to a larger fraction of longer runs when other strategies
are no longer satisficed given an environment with stronger
competitors. The most common movement strategy used by
the majority of a population at the end of shorter runs was
instead Drunkard, a sub-optimal biased random walk. The
Drunkard and Cake movement strategies were the only non-

Climber movement strategies seen at the end of longer
runs, indicating that for some conditions those movement
strategies remain “good enough.”
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